
Chapter 2:
Flow of Control

Stephen Huang
January 26, 2023

1

Contents

1. Boolean Expressions and Logical
Operators

2. IF statement
3. Short-Circuit Evaluation
4. Indentation
5. ELIF statement
6. Conditional IF Expression

2

Complexity

3

Before: After:

Simple IF
if <Boolean expression>:

<statement>
. . .

<statement>

4

1. Boolean Expressions
• A variable of Boolean type (bool) is either “True”

or “False”.

5

6

Operators resulted in Boolean

Symbol Meaning

< less than

<= less than or equal to

> greater than

>= greater than or equal to

== equal to

!= not equal to

Logical Operators
• A Boolean (logical) expression is an expression

that is either true or false.

• Expressions can be more complicated by
connecting smaller (sub-)expressions with logical
operators:
– and

– or

– not

7

Logical Operators
• Just as with arithmetic expressions, Boolean

expressions use brackets () and operator
precedence to specify the order in which their
sub-parts are evaluated.

– not

– and

– or

8

Logical Operators

9

p q p == q p != q p and q p or q not p

False False True False False False True

False True False True False True True

True False False True False True False

True True True False True True False

False True

False

True

True

Error

True

10

Examples

x, y, z = 5, 2, 0

print(x>9, y>0)

print(x>9 and y>0)

print(x>9 or y>0)

print(not x>9)

print(x=5)

Print(x==5)

Boolean Functions
• Many functions return a Boolean value.

• For example, bool(x) returns the Boolean value
of a specified object. Cast.

• The object will always return True unless:
– The object is empty, like [], (), {}

– The object is False

– The object is 0

– The object is None

11

Boolean functions (String)
• isinstance(item, dataType)

• str1.isdigit()

• str1.isalpha()

• str1.isalnum()

• str1.islower()

• str1.isupper()

• str1.isspace()

• str1.startwith(str2)

• str1.endwith(str2)

12

True

False

False

False

True

True

13

Examples
str1 = "0123"

str2 = "Tier 1"

str3 = "UH"

print(str1.isdigit())

print(str1.isalpha())

print(str2.isupper())

print(str2.isalnum())

print(str3.isalpha())

print(str3.isalnum())

Example
if isinstance(x, str):

print(x, type(x), id(x), len(x))
else:

print(x, type(x), id(x))

14

Other Values as Boolean
• Following C/C++ tradition, Python treats

– Number 0 (integer or float) as False

– Any other number as True.

• For strings,
– An empty string is False (length = 0)

– Everything else is True

• If you treat a Boolean as a number,
– True is 1

– False is 0

15

True

False

True

True

True

False

True

True

False

16

Examples
print(bool(1))

print(bool(0))

print(bool(-1))

print(bool(99))

print(bool(9.99))

print(bool(0.0))

print(bool("UH"))

print(bool("0"))

print(bool(""))

De Morgan’s Law

• not (cond1 and cond2) =
not (cond1) or not (cond2)

• not (cond1 or cond2) =
not (cond1) and not (cond2)

17

Chained Comparison
if (x >= 10) and (x <= 20):

print (x, "is inside 10 and 20.")
else:

print (x, "is outside 10 and 20.")

if (10 <= x <= 20):
print (x, "is inside 10 and 20.")

else:
print (x, "is outside 10 and 20.")

18

This is better

‘in’ as a Boolean Operator
• We will see ‘in’ as a keyword later in for-loops.

They are different!
• Syntax: <value> in <a collection of values>

– 5 in [1, 3, 5, 7, 9]

– 6 not in [1, 3, 5, 7, 9]

• It is a membership test.
• For string, the membership is interpreted as a

substring.
– ‘love’ in ‘I love Python’

19

2. IF statement
• if expression:

statement(s)
else:

statement(s)

20

Optional

21

IF statement

• The if statement chooses between two
alternatives based on a test expression.
There are two versions of the if statement:

if expression:
statement1(s)

if expression:
statement1(s)

else:
statement2(s)

22

IF Only
• In the first form, execution proceeds as follows.

– First, the test is evaluated.

– If the test evaluates to True, the statement(s) is
executed, and execution proceeds to the next
instruction.

– If the test evaluates False, the execution skips the
statement(s) and proceeds to the next instruction.

23

If-Else Statement
• For the second case,

– First, the test is evaluated.

– If the test evaluates to true, the statement1 is
executed, and execution proceeds to the next
instruction past the whole if-else, i.e., past
statement2.

– If the test evaluates to false, the execution skips the
statement1, executes the statement2, and proceeds
to the next instruction past the if-else.

24

IF-ELSE statement
• Note that in both cases, execution proceeds to

the next instruction after executing or skipping
the statement(s).

• IF statement can be nested (IF inside IF)

IF

25

test Statement(s)
T

F

IF-ELSE

26

Statement2 test Statement1
TF

ELIF (Else If)
if <expression>:

<statement>
elif <expression>:

<statement>
elif <expression>:

<statement>
else:

<statement>

27

28

Test Expression
• The test expression can be formed using

relational operators.
• Especially note that the test for equality uses the

symbol == and not =. The character = is used
for the assignment operator. Thus, you should
read == as "equal to" and read = as "assigned"
or "set to."

• Using = in a test is one of the most common
errors in writing programs.

• Fortunately, the IDE does catch this error.

Example
num1 = int(input("Enter the first number: "))
num2 = int(input("Enter the second number: "))

if num1 < num2:
print(num1, "is smaller.")

elif num1 > num2:
print(num2, "is smaller.")

else:
print("The two numbers are equal.")

29

Nested IF
if (a<b):

if (c<b):
print("b is the max")

else:
print("b is the median")

if (a<b):
if (c<b):

print("b is the max")
else:

print("b is the median")

30

Nested IF
if (a<b):

if (c<b):
print("b is the max")

else:
print("b is the median")

else:
pass

if (a<b):
if (c<b):

print("b is the max")
else:

pass
else:

print("b is the median")

31

3. Short-Circuit Evaluation
• When Python is processing a logical expression,

such as
Expr-1 and Expr-2

it evaluates the expression from left to right:
– Evaluate Expr-1 first and then
– Evaluate Expr-2 if necessary.

32

Short-Circuit Evaluation
• If Expr-1 is False, the whole expression is False

regardless of whether Expr-2 evaluates True or
False.

• When Python detects that there is no need to
evaluate the rest of a logical expression, it stops
its evaluation and does not compute the rest of
the expression.

• Saves computation time.

33

Short-Circuit
• Similarly, for

Expr-1 or Expr-2
There is no need to evaluate Expr-2 when Expr-
1 has been evaluated to True.

• Caution: Sometimes, whether an expression is
executed may have a side effect on the
program's execution.

34

1. True

2. (none)

3. Error

35

Examples
x, y = 6, 2

if x>=2 and x/y>2:

print("1. true")

x, y = 1, 0

if x>=2 and x/y>2:

print("2. true")

x, y = 6, 0

if x>=2 and x/y>2:

print("3. true")

Additional Remarks
• Side effects. A Boolean expression returns a

value: the last evaluated value.
– Short-circuit example

• There is a simpler way to do
if x**2>y:

result = True
else:

result = False

• Do this
result = x**2>y

36

4. Indentation
• Leading whitespace at the beginning of a logical

line is used to compute the line’s indentation
level, which in turn is used to determine the
grouping of statements.
– The total number of spaces preceding the first non-

blank character determines the line's indentation.

– Indentation cannot be split over multiple physical
lines with backslashes; the whitespace up to the first
backslash determines the indentation.

37

Indentation
• The indentation denotes python blocks; thus,

indentation is uniform in Python programs.

• Indentation is meaningful to us as readers.

38

Indentation in Python

39

Block 1

Block 2

Block 3

Block 2

Block 1

Indentation in Python

40

Block 1

Block 2

Block 3

Indentation
• One of the most distinctive features of Python is

its use of indentation to mark blocks of code.

• Indentation is a good practice but not necessary.

• The semicolon (;) is used as a “separator,” not
as a “terminator.”

• To indicate a code block in Python, you must
indent each block line by the same amount.

41

Don’t do this
status = int(input("Enter a number: "))

if status==1:

print("Hello")

print("world")

print("!")

if status==1:

print("Hello"); print("world"); print("!")

if status==1: print("Hello"); print("world"); print("!")

42

5. ELIF statement
• The IF statement can be nested. Any statement

inside the if-block can be an if statement too.

• Each nested if has to be indented further.

• It is not practical to have more than 5 or 6 levels
of indentation. Your program will be shifted to
the right.

• “elif” can be viewed as a shorthand for “else if.”

43

Nested if (cases)

44

Condition 1?

Condition 2?

Condition 3?

Statement 1

Statement 2

Statement 3 Statement 4

if (test1)

if (test2)

statement1

else

statement2

Nested if in C/C++

45

if (test1)

if (test2)

statement1

else

statement2

The ELSE matches with the nearest unmatched IF

Indentation does not change the
interpretation of the program.

if status==1:
print("One")

else:

if status==2:
print("Two")

else:

if status==3:

print("Three")

print("That's all.")

if status==1:
print("One")

elif status==2:
print("Two")

elif status==3:
print("Three")

print("That's all.")

46

A Comparison

Example

47

6. Conditional Expression
• Python has a short-hand notation for if-

statement that can be used directly within an
expression.

• “Shorthand” form of if-else.

• The if-condition is typically very simple.

• You don’t have to use this if you don’t like it. But
you should be able to understand it.

48

Conditional Expression
<expr1> if <conditional_expr> else <expr2>

• The conditional expression behaves like an
expression syntactically. It can be used as part
of a longer expression.

• It is also referred to as a conditional operator or
ternary operator in various places in the Python
documentation.

• In the following example, we can save a
temporary variable if the result is used only
once.

49

Equivalence

if food == "lamb":

reply = "Yuck"

else:

reply = "Yum"

reply = "Yuck" if food=="lamb" else "Yum"

50

Other Ways
<on_true> if <expression> else <on_false>

• (Boolean) Ternary operator.

• Compare to the ?: operator in other languages.

51

You can do this too
s = ('a' if x == 1 else

'b' if x == 2 else

'c' if x == 3 else

'd'

)

• This is cool!
• Probably easier to understand than nested if-else.

After all, the statement’s purpose is to give s a value.

52

No :No \

Which one is better?
num = eval(input("enter a number: "))

if num>=0:

abs = num

else:

abs = -num

abs = num if num>=0 else -num

print ("absolute value: ", abs)

53

Which one is better?
age = eval(input("Enter age: "))
if age < 18:

if age < 12:
print("kid")

else:
print("teeager")

else:
print("adult")

print("kid" if age<12 else
"teenager" if age<18 else
"adult")

54

Which one is better?
if boolExp == True:

if boolExp:

if boolExp == False:

if not boolExp:

if (a<x) and (x<b):

if (a<x<b):

55

if num1>num2:

xxx

if num2>num1:

xxx

if num2==num1:

xxx

if num1>num2:

xxx

elif num2>num1:

xxx

else:

xxx

56

Are they the same?

if num1>num2:

xxx

if num2>num1:

xxx

if num2==num1:

xxx

if num1>num2:

xxx

elif num2>num1:

xxx

else:

xxx

57

Which one is better?

Are they doing the same thing?

